

Plant Archives

Journal homepage: http://www.plantarchives.org
DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.052

NANOTECHNOLOGY AND ITS APPLICATIONS IN PLANT DISEASE MANAGEMENT: A REVIEW

Mina Kumari¹, Munna Yadav^{2*}, Sneha Shikha³, Uday Kumar³, Neha Rani⁴, Jaya Kumari⁵ and Anil Kumar Singh⁶

¹Department of Plant Pathology, Nalanda College of Horticulture, Noorsarai, Nalanda, Bihar, India.

²Department of Entomology, Mandan Bharti Agriculture College, Agwanpur, Saharsa, Bihar, India

³Department of Plant Pathology, Bihar Agricultural College, Sabour, Bhagalpur, Bihar, India

⁴ Department of Plant Breeding and Genetics, Nalanda College of Horticulture, Noorsarai, Nalanda, Bihar, India.

⁵ Department of Horticulture (Floriculture and Landscaping), Nalanda College of Horticulture, Noorsarai, Nalanda, Bihar, India.

⁶ Director Research, Bihar Agricultural College, Sabour, Bhagalpur, Bihar, India

*Corresponding author E-mail: munnayadavrau@gmail.com.

(Date of Receiving-24-05-2025; Date of Acceptance-01-08-2025)

ABSTRACT

Nanotechnology is the creation of materials, devices or system with new properties or functions through manipulation of matter at the nano scale. Application of nanotechnology in the field of agriculture is achieved through fertilizers that increase plant growth and yield and nanopesticides for the management of pests and diseases; and nanosensors to monitor soil quality and plant health. As nanotechnology requires less inputs and producing less quantity of wastes than conventional products, it enhances the efficiency and sustainability of agricultural practices. Nanoparticles are the new weapons for battling plant diseases and provide crop protection by acting either as protectants or carriers. Metal nanoparticles such as silver, copper, zinc oxide, and titanium dioxide have been intensively researched for their antibacterial, antifungal and antiviral properties. This review paper discusses the green synthesis, characterization and potential applications of various nanoparticles in detection of plant pathogens and plant disease management. Additionally, it mentions the research gap or obstacles that must be overcome to fully harness its potential for sustainable plant disease management.

Key words: Disease management, Nanoparticles, Nanotechnology, Pathogens.

Introduction

World population is increasing rapidly and has been expected to reach about 10 billion by 2050 so to feed increasing mouth require increase in food production by 50%. At present, large quantity of agricultural inputs are used to maximize agricultural production. One data suggests that globally annual production exceeds 3 billion tonnes and requires 2.7 trillion cubic meters of water, 187 million tonnes of fertilizer, 2 quadrillion British thermal units (BTU) of energy, and approximately 4 million tonnes pesticides (Kah *et al.*, 2019). Conventional pesticides are strongly associated with environmental degradation and health hazards whereas nanotechnology provides promising responses to these multiple challenges due to higher efficacy of nano-active ingredients that allows the

reduction of pesticide volumes, thus lowering costs and increasing yields. Nanoparticles are divided into different categories on the basis of their properties and the materials from which they are derived, but at present, in agriculture, nanoparticles of metals, non-metals, metallic oxide, metalloids, carbon nanomaterials, quantum dots, liposomes, dendrimers have been used (Elmer and White, 2018). There are several nanoparticles that are utilized in plant disease management among them only silver, copper and zinc have received much attention. Silver and copper nanoparticles are toxic to pest and pathogens as they act directly as antimicrobial agents while boron, silicon, copper and zinc nanoparticles activate defense mechanisms by altering the nutritional status of the host plant. Significance of nanotechnology has been realized at national and

international level and in several countries have set committee and groups to support and monitor nanotechnological advancements and to harness its benefits for the mankind. The Indian government has set up a Nano Research Project during the Eleventh Five Year Plan (2007-2012).

History of Nanotechnology

The ideas and concepts of nanoscience and nanotechnology was first given by renowned physicist Richard Feynman in his famous talk "There's Plenty of Room at the Bottom, on 29 December, 1959 at California Institute of Technology. Due to his contribution in nanotechnology, he is also known as "The Father of Nanotechnology" and awarded with noble prize in Physics in 1965. The term nanotechnology was first given by Norio Taniguchi in 1974 (Agrawal and Rathore, 2014). Term "Nano" is derived from the Greek word meaning "dwarf" or very small.

Synthesis of Nanoparticles

Nanopartcles is a microscopic particle where size is measured in nanometers. Nanoparticles are synthesized by three methods namely physical, chemical, and biological through two fundamental approach i.e. top down approach and bottom up approach. Top down approach involves creation materials at nano-scale through physical or chemical breaking down of larger materials. It is having long execution time whereas bottom up approach is the process of assembling nano materials atom-by-atom or molecule-by-molecule or arrangement of smaller components into more complex form. Bottom up approach is having short execution time. The physical and chemical methods for syntesizing nanopaticles are time consuming and tedious. Chemical methods include the use of hazardous chemicals that may cause adverse effects on the users. So, synthesis of nanoparticles must be achieved through ecofriendly, easy and rapid methods. The biological agents such as plants species and microbes (fungi, yeast, bacteria, plant virus) and algae have emerged as a cost effective, easy, ecofriendly and efficient candidates for the synthesis of nanoparticles by green synthesis approach as it elliminates the use of toxic chemicals (Bora et al., 2022; Munir et al., 2023). Because of its non-toxicity, cost effective, eco-friendly synthesis at large scale green nanotechnology attracted the researcher and can be used effectively for the management of several phytopathogens. It may act as a viable alternative for traditional chemical synthesis procedure.

Plant extracts are well known for suppressing plant pathogens and managing plant diseases because plants

are rich source of several bioactive compounds like phenols, flavonoids, ascorbic acids, ketones, aldehydes, carboxylic acids, terpenoids, and amides. These compounds act as the reducing agents and stabilizers in the green synthesis of nanomaterials (Singh et al., 2018). So, extracts different plants like *Ocimum tenuiflorum*, Solanum tricobatum, Citrus limon, Azadirachta indica, Avena sativa, Centella asiatica, Helianthus annus, Brassica juncea, Medicago sativa, citrus sinensis etc. are currently utilized for the synthesis of gold, silver, zinc, cobalt, copper, and nickel nanoparticles (Marchiol, 2012). Potential antimicrobial activities were also reported against both gram-positive and gram-negative bacteria when treated with copper oxide (CuO) nanoparticles synthesized from Malva sylvestris (Awwad et al., 2015). Silver nanoparticles synthesized from plant extract of Acalypha indica were found effective against soil-borne pathogens (Krishnaraj et al., 2010).

Although a large number of microorganisms are used for biological synthesis of nanoparticles, fungi are more precisely utilized as natural 'nanofactories' because of its easy downstream processing, easy in handling, and less amenable to genetic manipulation compared to prokaryotes and their ability to secrete a large number of enzymes. Bacterial species like Pseudomonas stuzeri, Desulfovibrio desulfuricans, Clostridium thermoaceticum and Klebsiella aerogans are involved in synthesis of several nanoparticles. Similarly, plant viruses mainly of spherical/icosahedral group are considered as the examples of naturally occurring nanomaterials or nanoparticles. Their ability to infect, deliver nucleic acids genome to a specific site in host cell, replicate, package nucleic acid and come out of host cell precisely in an orderly manner make them appropriate to be utilized in the field of nanotechnology. Also, algae belonging to the class Cyanophyceae, Chlorophyceae, Phaophyceae, and Rhodophyceae are used in the synthesis of silver, gold and other metallic nanoparticles. Due to the presence of bioactive compounds such as pigments and antioxidants in their cell extracts, algae are utilized in the synthesis of diverse nanomaterials.

Characterization of Nanoparticles

Characterization of nanoparticles after synthesis is also necessary to establish an understanding and control of its synthesis and applications. It is characterized by using several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIS), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Energy-dispersive spectroscopy, atomic force microscopy (AFM), UV-visible spectrophotometry, Thermo gravimetric analyzer

on the basis of its origin, shape, size, dimension, color, atomic composition, dispersivity, surface area, surface morphology, surface charge, magnetic properties, crystallinity and several other physical, chemical and biological properties of the synthesized nanoparticles (Ahmad et al., 2019; Banerjee et al., 2021). In a colloidal suspension Brownian movement of nanoparticles is determined by dynamic light scattering (DLS). The electrostatic interaction of nanoparticles with bioactive compounds depends on the surface charge, and the zeta potential value. XRD provides data about the crystalline structures of the nanoparticles. Different structural attributes of nanoparticles are determined by using nuclear magnetic resonance (NMR). UV-visible spectroscopy gives an idea about nanoparticles' optical properties by measuring the light reflected by the nanoparticles and also determines the stability of nanoparticles in the colloidal suspension (Mourdikoudis et al., 2018).

Nano-formulations

Nano-formulations like nanoemulsions, nanoencapsulates, nanocontainers and other nano delivery techniques are used in plant protection. Nanoparticles are highly stable and are biodegradable and it can be successfully employed in production of nanocapsules for delivery of pesticides, fertilizers, and other agrochemicals. Nanoparticles displays slow release of encapsulated functional molecules and reduce its frequent applications.

Potential applications in Plant Pathology

Plant pathogens are well known threats and predominantly targets plants products, thus nanoparticles play a crucial role in early detection and plant disease management. Its application in plant pathology has brought advances in detection and eradication of pathogens even while they are in minute densities.

Detection of plant pathogens

Detection of infected plant parts as well as pathogen at initial stage is very important for the success of any sanitation practice that can save tons of food from possible damages by diseases (Elmer and White, 2018). Nanotechnology offers significant advances in this area of diagnosis through development of faster and more sensitive pathogen probes. Recently, the use of portable nanodevices helps to detect different environmental pollutants, pathogens, insects, diseases, and agrochemicals; consequently, it decreased the use of pesticides, fungicides, and antibiotics (Sharon *et al.*, 2010). Rapid detection of diverse plant pathogens such as bacteria, virus, fungus and nematodes can be achieved by the use of nanoparticles as a diagnostic tool (Yao *et*

al., 2009). In this context, superparamagnetic iron oxide nanoparticles (Ahmadov et al., 2014), magnetic nanoparticles (as it attaches the biological tissues or DNA), nanosensors, nanochips and quantum dots (QDs) have been used as diagnostic tool for detection of phytopathogens. Magnetic nanoparticles including superparamagnetic iron oxide and QDs can be used as a disease diagnostic tool as both of these found to be attached with hyphae. QDs have emerged as pivotal tools for detecting pathogen with extreme accuracy.

Nanobiosensors are small, portable, rapid response and processing, accurate which can overcome the deficits of present sensors. Basically, biosensors are made up of a signal receptor that receives signals from the surrounding environment and a signal transducer. There are three components of nanobiosensors namely probe, bioreceptor, and transducer. Furthermore, biosensors act as an important diagnostic tool in the field of plant pathology as it produces an electric signal on coming in contact with a pathogen, electric signal increase with increase in density of the pathogen and this interaction is converted into a digital output. Nano-based biosensors increased the sensitivity of pathogen detection and disease diagnosis in comparison to conventional ELISA techniques in plants (Baac et al., 2006; Perdikaris et al., 2011). Different studies have reported the potential of antibodybased biosensors for the detection of the presence of tobacco mosaic virus (TMV), lettuce mosaic virus, and cowpea mosaic virus (Chartuprayoon et al., 2013; Lin et al., 2014). Similarly, QDs and FRET-based biosensors were used to detect the beet necrotic yellow vein virus in Polymyxa betae (Safarpour et al., 2012). Bio-sensor consisting of nano-Au with single-stranded oligonucleotides were used for the detection of genomic DNA of Ralstonia solanacearum in the soil (Khaledian et al., 2017). In stress conditions plant accumulates several stress-related hormones. An investigation of Shang et al., (2019) reported the detection of plant pathogenic fungus by using gold electrode nanosensor and copper nanoparticles by sensing salicylic acid concentrations in the soil. Nanobiosensors combined with a global positioning system (GPS) was used for real-time monitoring of the agricultural field. This technology offers early detection of the pathogen and gives data about crop growth and environmental pollutants (Bergeson, 2010; Khot et al., 2012). So, nanobiosensors supports sustainable agriculture by increasing crop yield and suppressing diseae development. Nanochips are type of microarrays that contains florescent oligo capture probes through which the hybridization can be detected (Lopez et al., 2009). It is known for its high sensitivity and

 Table 1:
 Green Synthesis of Nanoparticles.

384

	Plant-based nanoparticles		
Nanoparticles	Plant name and plant parts used for synthesis	References	
Silver nanoparticles	Argemone mexicana (Leaf extract)	Singh <i>et al.</i> , 2010	
	Cashew apple (Anacardium occidentale L.) Juice	Mukunthan and Balaji, 2012	
	Emblica offcinalis (Fruit extract)	Ramesh et al., 2015	
Gold nanoparticles	Musa paradisiaca (Peel extract)	Banker <i>et al.</i> , 2010	
	Coleus amboinicus Lour. (Leaf extract)	Narayanan and Shakthivel, 2010	
	Allium cepa (Plant extract)	Parida <i>et al.</i> , 2011	
Palladium nanocrystal	Curcuma longa (Tuber extract)	Sathishkumar et al., 2009	
Copper nanoparticles	Punica granatum (Peel extract)	Kaur et al., 2016	
Zinc oxide nanoparticles	Solanum nigrum (Leaf extract) Ramesh et al. 2		
Silver and gold nanoparticles	Aloe barbadensis (Plant extract)	Chandran et al., 2006	
	Chenopodium album (Leaf extract)	Dwivedi and Gopal, 2010	
	Azadirachta indica (Leaf extract)	Kora <i>et al.</i> , 2012	
Nickel, Silver, Gold and Copper oxide	V 11	NEW 1 1 2010	
nanoparticles	Medicago sativa (Whole plant)	Mittal <i>et al.</i> , 2013	
	Fungi-based nanoparticles		
Nanoparticles	Fungal species	References	
Gold nanoparticles	Verticillium sp.	Mukherjee et al., 2001	
	Trichothecium	Ahmad <i>et al.</i> , 2005	
	Penicillium sp.	Zhang et al., 2009; Du et al., 2011	
Silver nanoparticles	Pleurotus spp.	Gade et al., 2007	
	Fusarium semitectum	Basavaraja <i>et al.</i> , 2008	
	Pleurotus sajor caju	Nithya <i>et al.</i> , 2009	
	Alternaria alternata	Gajbhiye et al., 2009	
	Penicillium sp.	Singh <i>et al.</i> , 2014	
	Aspergillus oryzae (MTCC No. 1846)	Phanjom and Ahmed, 2015	
	Trichoderma harzianum	Guilger <i>et al.</i> , 2017	
Silver, gold and bimetallic nanoparticles	Neurospora crassa	Castro <i>et al.</i> , 2011	
	Bacteria-based nanoparticles		
Nanoparticles	Bacterial species	References	
Gold nanoparticles	Rhodococcus sp.	Ahmad <i>et al.</i> , 2003	
	Pseudomonas aeruginosa	Husseiny et al., 2007	
Silver nanoparticles	Clostridium versicolor	Sanghi and Verma, 2009	
	Escherichia coli	Gurunathan et al., 2012	
Gold and silver nanoparticles	Brevibacterium casei	Kalishwaralal et al., 2010	
	Bacillus subtilis	Reddy et al., 2010	
	Plant-virus based nanoparticles		
Nanoparticles	Plant virus	References	
Gold nanoparticles	Cowpea chlorotic mottle virus (CCMV)	Slocik <i>et al.</i> , 2005	
	Brome mosaic virus	Sun <i>et al.</i> , 2007	
Iron and platinum nanoparticles	Cowpea mosaic virus (CMV)	Shah et al., 2009	
	Algae-based nanoparticles		
Nanoparticles	Algae species	References	
Silver chloride nanoparticles	Sargassum plagiophyllum	Dhas <i>et al.</i> , 2014	
Silver nanoparticles	Cystophora moniliformis	Prasad <i>et al.</i> , 2013	
	Chlamydomonas reinhardtii	Barwal <i>et al.</i> , 2011	
Gold nanoparticles	Sargassum muticum	Namvar <i>et al.</i> , 2015	
-	Chlorella vulgaris	Annamalai and Nallamuthu, 2016	
Iron nanoparticles	Chlorella vulgaris Euglena gracilis	Annamalai and Nallamuthu, 2016 Brayner <i>et al.</i> , 2012	
Iron nanoparticles Magnetic iron oxide nanoparticles	_		

specificity in detecting single nucleotide change in bacteria and viruses.

Plant Disease Management

Continuous efforts are made by plant pathologists to find an effective solution that can protect food and agricultural products from various phytopathogens. Nanotechnologists are also playing their important role in plant disease development by improving existing crop protection protocols in short to medium terms (Kah et al., 2013). It is reported that very small amount (less than 0.1%) of pesticides in air during application and as run-off, spray drift, off-target deposition and photodegradation affecting both the environment and application costs (Pimentel, 1995). Currently, plant diseases are managed through an efficient use of fungicides and insecticides (viral diseases). These chemicals although provides rapid response, easy availability, and reliability in their application. However, chemical pesticides also affect nontarget organisms, and may lead to disease resistance and resurgence of the pest population. Further, pesticides have no long-lasting effects and 90% of used pesticides are lost during or after application (Ghormade et al., 2011). So, it is required to develop cost-effective, efficient pesticides that are less toxic to the environment. Application of nanotechnology has significant potential in crop protection, especially in the plant disease management by controlled and target delivery of several agrochemicals (nanopesticides) and also by providing diagnostic tools for early disease detection.

Nanopesticides are a new field of agriculture technology utilizing nanomaterials for smart delivery of pesticides in protecting plant against diseases and damages caused by pests and pathogens. Nanopesticides are formed by the combination of numerous surfactants, polymers, and metal nanoparticles at nanoscale dimensions (Sekhon, 2014). Nanoparticles may act upon the pathogens in a way similar to chemical pesticides or these nanomaterials can be used as a carrier for active ingredients of pesticides, double-stranded RNA (dsRNA), host defense chemicals for their use as spray application, drenching/soaking onto seeds and over other tissues like root and leaves (Worall et al., 2018). Because of ultrasmall size, nanoparticles may hit target virus particularly and may open a new field of virus control in pants. Nanoencapsulated pesticide formulations are applied in crop protection with an intention to pesticide dosage, and prevent their exposure to human health and environment (Nuruzzaman et al., 2016). Further application of nanopesticides is associated with conservation of both water and energy as they are required in lesser amount and less frequently than other agrochemicals used as pesticides. In this way, nanopesticides usages over other agrochemicals are economically safe as they enhance crop productivity by increasing the pesticide use efficiency, reducing the wastages and labor cost. The slow degradation and controlled release of active ingredients in presence of suitable nanoparticles or other nanomaterials can control pests effectively over longer period of time (Chippa, 2017). The solubility and mobility of the active ingredients formulated as nanopesticides are favored and increased by soil-inhabiting microorganisms and therefore, causing lesser drastic impacts on environment than harmful pesticides (Kah and Hofmann, 2014).

Metal Nanoparticles

Metal nanoparticles can be used as new and alternative means against synthetic fungicides because of its multiple mode of inhibition.

Silver nanoparticles (Ag NPs):

Use of nanosize silver particles as antimicrobial agents becomes more common and most studied and utilized nanoparticles with its strong inhibitory, bactericidal as well as broad spectrum of antimicrobial activities (Swamy and Prasad, 2012). Further, Ag NPs were first used in management of plant disease (Richards, 1981). Although the mechanisms of Ag NPs toxicity are not fully characterized but it is believed the Ag⁺ ions bind to cysteine-containing proteins on plasma membrane, causing both physiological and biochemical damage that compromise membrane integrity. Effect of Ag NPs on the growth of sclerotium-forming species Rhizoctonia solani, Sclerotinia sclerotiorum and S. minor, revealed that Ag NPs effectively inhibit the hyphal growth in a dose-dependent manner. Further, the microscopic observations of hyphae exposed to Ag NPs showed severe damage and resulted in the separation of layers of hyphal wall and collapse of fungal hyphae (Min et al. 2009). Ag NPs have been deployed as antifungal agent against Rhizoctonia solani, Alternaria alternata, Macrophomina phaseolina, Curvularia lunata, Sclerotinia sclerotiorum, and Botrytis cinerea (Rafique et al., 2017).

Since silver displays various modes of inhibitory action of plant pathogens, it may be used for controlling various plant pathogens in a moderately safer way compared to synthetic fungicides (Oh *et al.*, 2006; Park *et al.*, 2006).

Zinc oxide nanoparticles (ZnO NPs):

With lower toxicity and secondary benefits on soil

fertility, ZnO NPs has clear advantage over silver nanoparticles for controlling fungal pathogen (Dimpka et al., 2013). Furthermore, in many studies, Zn nanoformulations have been found very effective against different bacteria as well as fungal plant pathogens including Botrytis cinerea, A. alternata, Mucor plumbeus, F. oxysporum, R. solani, Penicillium expansum, S. sclerotiorum and Rhizopus stolonifera (He et al., 2011; Indhumathy and Mala, 2013; Sardella et al., 2017). ZnO NPs application leads to deformation of fungal hyphae, prevention of development of conidiophores and conidia which ultimately leads to the death of fungal hyphae. Maximum inhibition of mycelia growth of Fusarium oxysporum and Penicillium expansum was reported (Yehia and Ahmed, 2013).

Table 2: Nanomaterials for Plant Disease Management.

Silica nanoparticles:

Application of silicon enhances resistance in plants against various disease and stress (Brecht *et al.*, 2004). It also stimulates the physiological activity and growth of plants. Mesoporous silica nanoparticles were used to deliver DNA and chemicals inside plant cells and intact leaves (Torney *et al.*, 2007).

Copper nanoparticles (Cu NPs):

In addition to the antimicrobial activity of copper oxide nanoparticles ((CuO NPs) towards many plant-pathogenic bacteria and fungi, Cu NPs could operate by a nutritional mechanism. Copper is an essential micronutrient that plays a pivotal role in growth as well as defense against plant diseases. Copper based fungicides damages lipids, proteins, DNA, and other

Types of Nanoparticles	Pathogen/ disease	Effect	References
Silver nanoparticles	Sphaerotheca	Antifungal effect was shown against	Kim et al., 2008
	pannosa var. rosae	pathogen causing powdery mildew in roses.	
	Sclerotium cepivorum	90% inhibition in growth of pathogen	Jung et al., 2010
		(in vitro) causing white rot in green onion.	
	Colletotrichum species	Inhibition of growth, conidial germination,	Lamsal <i>et al.</i> , 2011
		and hyphae of pathogen causing	
		anthracnose in pepper.	
	Bipolaris sorokiniana	Complete inhibition of conidial germination of	Mishra <i>et al.</i> , 2014
		given pathogen causing spot blotch in wheat.	
	Sun-hemp rosette virus	Application Ag NPs on leaves, complete	Jain and Kothari, 2014
		suppression of virus.	
	Bean Yellow Mosaic	Faba bean shown better result against	Elbeshehy et al., 2015
	Virus (BYMV)	BYMV after 24 hours of inoculation.	
	Rhizoctonia solani	Inhibition of sclerotia formation and	Soltani <i>et al.</i> , 2016
		mycelial growth (in vitro) and suppression	
		of lesion development in leaves by pathogen	
		causing sheath blight in rice (in vivo).	
	Colletotrichum musae	70% disease suppression in banana fruit.	Jagana <i>et al.</i> , 2017
	Tomato spotted wilt	Inhibition of local lesions and reduction in	Shafie <i>et al.</i> , 2018
	virus (TSWV)	TSWV infection.	
	Pectobacterium	controlled soft rot disease in pepper	Ayisigi et al., 2020
	carotovorum	(Capsicum annum).	
	Xanthomonas campestris	Effective against given bacterial pathogen	Vanti et al., 2019
	and X. axonopodis	in <i>Vigna unguiculata</i> .	
	Alernaria alternata	Antifungal activity noticed with 21mm	Rana et al., 2023
	and Sclerotium rolfsii	zones of inhibition against A. alernata,	
	(in tomato), and	17 mm against S. rolfsii while antibacterial	
	Xanthomonas	activity against X. oryzae with 15 mm	
	oryzae (in rice)	zones of inhibition.	
ZnO, CuO and Ag	Botrytis cinerea	Suppression of Grey mold disease in	Malandrakis et al.,
nanopariicles		Prunus domestica fruits.	2019
Double stranded DNA	Xanthomonas	Controlled bacterial spot disease	Ocsoy et al., 2013
directed Ag nanopariicles	perforans	in tomato plant.	
Continue2			

Continue...2

Fluconazole mixed with	Cladosporium berbarum,	Exhibited enhanced fungicidal activity	Bholay et al., 2013;
Ag nanopariicles	Alternaria alternata and	in given pathogen.	Fajar <i>et al.</i> , 2020
Ag nanoparticles		in given patnogen.	Fajai ei ai., 2020
Silver and silica (mixture)	Fusarium oxysporum Pseudomonas syringae	Activated defense response & resulted in 25%	Chu et al., 2012
nanoparticles	pv. tomato	disease resistance in <i>Arabidopsis thaliana</i> .	Ciiu ei ai., 2012
Poly dispersed gold	Barley mosaic virus	Induced resistance in plantes by melting	Alkubaisi <i>et al.</i> , 2015
	Bariey mosaic virus		Aikubaisi et at., 2015
nanoparticles Zinckicide, a formulation	V d	and dissolving the virus particles.	Custom 4 1 2016
of Zinc nanoparticles	Xanthomonas citri	Suppressed citrus canker disease.	Graham <i>et al.</i> , 2016
1	Sclerospora	Plasmolysis and inhibition of spore	Nandhini et al., 2019
	graminicola	germination, 35% reduction in incidence	
		of downy mildew in pearl millet.	
Copper nanoparticles	Xanthomonas	Reduction in severity of bacterial blight	Mondal and Mani,
- · · · · · · · · · · · · · · · · · · ·	axonopodis pv. punicae	in Pomegranate (<i>Punica granatum</i> L) crop.	2012
Bordeaux mixture made	Xiphinima index	Inhibited the nematode, causing	Elmer and White, 2013
out from copper	mpilima macx	disease in grape plant.	Effici and Winte, 2010
nanoparticles		disease in grape plant.	
nanoparticles	Xanthomonas oryzae	Highly effective in controlling bacterial	Gogoi <i>et al.</i> , 2009
	pv. <i>oryzae</i> and <i>X</i> .	blight of rice (<i>Xanthomonas oryzae</i> pv.	Gogor et al., 2007
	campestris pv. phaseoli	oryzae) and leaf spot of mung (X.	
	campesiris pv. pnaseon		
Culmbus non amosti alas	Fusarium solani, F.	campestris pv. phaseoli). Inhibition of Fusarium solani in potato,	Boxi <i>et al.</i> , 2016
Sulphur nanoparticles	· · ·	•	DOX1 et at., 2010
	oxysporum, Aspergillus	Effective fungicide and provided	
	niger and Venturia inaequalis	protection against given pathogen.	
TiO ₂ /Zn nanoparticles	Xanthomonas spp.	Suppression of bacterial leaf spot	Paret <i>et al.</i> , 2013
2		disease in rose.	
Magnesium oxide	Ralstonia solanacearum	Controlled bacterial wilt disease by	Imada <i>et al.</i> , 2016
nanoparticles		inducing systemic resistance in tomato	,
		(Solanum lycopersicum).	
Aluminum oxide	Fusarium oxysporum	Suppressed <i>Fusarium</i> root rot	Shenashen et al., 201'
nanoparticles		disease in tomato.	,
Nickel oxide	Cucumber mosaic	Reduction in disease severity and	Derbalah and
nanoparticles	virus (CMV)	CMV concentration.	Elsharkawy, 2019
Chitosan nanoparticles	Fusarium sp., Botrytis	Shown antimicrobial activity against	Kashyap et al., 2015
Chitosan nanoparticies	sp., Pyricularia grisea	Fusarium crown, root rot in tomato,	Rushyup et ut., 2013
	sp., 1 yricularia grisea	Botrytis bunch rot in grapes, and	
		P. grisea in rice.	
	Alternaria solani and	Inhibition of mycelial growth and spore	Cahanan at al 2012
		, ,	Saharan <i>et al.</i> , 2013
	F	annoination of formai accesing a contribition	
	Fusarium oxysporum	germination of fungi causing early blight	
	Fusarium oxysporum	(A. solani) and wilt (Fusarium	
		(A. solani) and wilt (Fusarium oxysporum) in tomato.	
	Bean mild mosaic virus	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against	
	Bean mild mosaic virus (BMMV), Tobacco	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against BMMV, and in tobacco against	Malerba and Cerana, 2016
	Bean mild mosaic virus (BMMV), Tobacco mosaic virus (TMV),	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against	
	Bean mild mosaic virus (BMMV), Tobacco	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against BMMV, and in tobacco against	
Fungicide-Loaded	Bean mild mosaic virus (BMMV), Tobacco mosaic virus (TMV), Tobacco necrosis	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against BMMV, and in tobacco against TMV and TNV.	
Fungicide-Loaded Chitosan-Carrageenan	Bean mild mosaic virus (BMMV), Tobacco mosaic virus (TMV), Tobacco necrosis virus (TNV)	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against BMMV, and in tobacco against	2016
Chitosan-Carrageenan	Bean mild mosaic virus (BMMV), Tobacco mosaic virus (TMV), Tobacco necrosis virus (TNV) Alternaria alternata and Sclerotinia	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against BMMV, and in tobacco against TMV and TNV. Controlled infection potatoes and	2016
Chitosan-Carrageenan Nanoparticles	Bean mild mosaic virus (BMMV), Tobacco mosaic virus (TMV), Tobacco necrosis virus (TNV) Alternaria alternata and Sclerotinia sclerotiorum	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against BMMV, and in tobacco against TMV and TNV. Controlled infection potatoes and tomatoes under in vivo condition.	Kumar <i>et al.</i> , 2022
Chitosan-Carrageenan	Bean mild mosaic virus (BMMV), Tobacco mosaic virus (TMV), Tobacco necrosis virus (TNV) Alternaria alternata and Sclerotinia	(A. solani) and wilt (Fusarium oxysporum) in tomato. Shown antiviral effect in beans against BMMV, and in tobacco against TMV and TNV. Controlled infection potatoes and	2016

biomolecules by producing highly reactive hydroxyl radicals. Because of its bio-compatibility, these nanohydrogels are included as a new generation of copperbased biopesticides and it could also be developed into an efficient delivery system for copper-based fungicides for plant protection (Brunnel *et al.*, 2013). Fungicides formulated from Cu NPs can inhibit the progression of *Phytophthora infestans* in the tomato plants. ⁸⁸ Application of CuO NPs enhanced the synthesis of different defense-related enzymes, including polyphenol oxidase, in plants (Wang *et al.*, 2013; Sarkar *et al.*, 2020). It was reported that, copper nanoparticles synthesized biologically from *Streptomyces griseus*, successfully suppressed root rot disease in tea caused by *Poria hypolateritia* (Ponmurugan *et al.*, 2016).

Non-metal, metalloids, metallic oxide nanoparticles:

Very little studies are done on application of nonmetal, metalloids and metallic oxides in plant disease management. Still there are some reports which ensure the disease resistance potentials of these nanoparticles. Among non-metal nanoparticles, nano S (sulfur) and nano Ti (titanium) are the most studied. Nano S is mostly used for formulating nano fungicides. It was found that the applications of S nanoparticles can protect plants against Fusarium solani, F.oxysporum, Aspergillus niger, and Venturia inaequalis (Rao and Paria, 2013). Metalloids Si (silicon) nanoparticles have several impacts on disease management. Application of nano Si with Ag inhibited powdery mildew (Park et al., 2006). Nano manganese oxide (MnO) is a metallic oxide nanoparticle to control wilt disease in eggplant and watermelons (Elmer and White, 2018). CuO, TiO₂, Fe₂O₃, and MgO are some other metallic oxide nanoparticles that are used in plant disease management.

Carbon Nanomaterials:

Carbon nanoparticles are made out of carbon, having several unique physical properties and functions in different research fields. Till now, very little information is available on how these nanoparticles contribute to plant disease management. However, recent researchers have revealed that engineered carbon nanoparticles influences plant growth and can eradicate some plant pathogens. The allotropic character of carbon provides a wide array of nanomaterial morphologies and structures that have vast applications in development of each biological and chemical sensors and their applications in agriculture and medicine (Kurbanoglu and Ozkan, 2018). There are mainly three types of carbon nanoparticles that have demonstrated the potential to affect plant health: graphene oxide (oxidized and reduced forms), carbon nanotubes

(single wall or multiwall), and fullerenes, which in turn suggests an important disease management tool could be exploited. The mechanisms for inhibition may be physical, with the sharp nano-edges directly damaging cell walls of the pathogens (Berry *et al.*, 2014; Hao *et al.*, 2017).

Graphene oxide can induce 95% disease resistance in *Xanthomonas oryzae* pv *oryzae* against bacterial pathogen of rice (Chen *et al.*, 2013). Antifungal activity of reduced graphene oxide (rGO) nanosheets was evaluated against *Aspergillus niger, A. oryzae* and *Fusarium oxysporum* and inhibition of mycelial growth of the tested fungi was noticed and it was believed that this was due to sharp edges of the rGO (Sawangphruk *et al.*, 2012).

In vitro studies have shown that carbon nanotubes can restrict growth of many plant pathogens, including Aspergillus spp., Botrytis cinerea and Fusarium spp. The mechanism of antifungal effects of carbon nanomaterials was evaluated against two important fungal plant pathogens (Fusarium graminearum and F. poae) and it was noticed that the antifungal mechanism of carbon nanotubes multiwalls (CNMs) was deduced to target the spores in three steps:

- (i) deposition on the surface of the spores,
- (ii) inhibition of water uptake and
- (iii) plasmolysis (Wang et al., 2014).

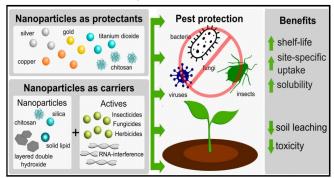
Currently, there are no field studies with carbon nanomaterials and plant disease, so much additional work is needed, serious investigation should be targeted at these materials as a management tools.

Chitosan nanoparticles:

Chitosan is a natural biopolymer obtained from the shells of snails and prawns is one of the most popular biopolymer nanoparticles, having several biological activities. Recently chitosan nanoparticles are gaining more interest as it is biodegradable, ecofriendly, costeffective with non-allergenicity and antimicrobial activity. So, it could be formulated and used as a natural antifungal agent in the form of nanoparticles. A recent study demonstrated that the use of chitosan nanoparticles induced disease resistance in the plant. It is a very useful vehicle for drug-delivery and gene transfer as its preparation is very simple (El Hadrami et al., 2010). Application of chitosan nanoparticles induces disease resistance in the tea plant by elevating the defense-related enzymes such as polyphenol oxidase (PO), phenylalanine ammonia-lyase (PAL) and β-1,3-glucanase (Chandra et al., 2015).

Potential mechanisms that are responsible for antimicrobial effects in chitosan, such as agglutination, disruption of the cell membrane, inhibition of H⁺-ATPase activity, inhibition of toxin production and microbial growth, inhibition of the synthesis of mRNA and proteins, and blockage of nutrient flow was reported (Malerba and Cerana, 2016). In addition, chitosan nanoparticles can enhance plants immune responses, indicating that it is a unique and potential therapeutic agent for plant disease management.

Dendrimers:


They are tree-like nanoparticles, mainly used as vehicles for transferring chemicals or DNA to achieve disease resistance. Dendrimers facilitate transportation of disease inhibiting chemicals into those tissues generally where these chemicals fail to reach (Elmer and White, 2018).

Liposomes:

Liposomes are mainly used for crop irrigation treatment as they are very stable in water. It is made up of phospholipid bilayers and has a spherical structure forming a central hollow core. Liposomes ligated with different antimicrobial agents and other disease suppressing chemicals have a potential function in plant disease management (Matouskova *et al.*, 2016).

Nanotechnology in agriculture provides a new generation of pesticides and other actives or nanomaterials for plant disease management. Protection in plants against pests and pathogens occurs through two different mechanisms:

- (i) nanotechnology themselves providing crop protection, or
- (ii) acting as carriers for existing pesticides, such as double-stranded RNA (dsRNA). There are several benefits of applying nanoparticles as carriers, like
- (a) enhanced shelf life,
- (b) improved solubility of poorly soluble pesticides,
- (c) reduced toxicity,

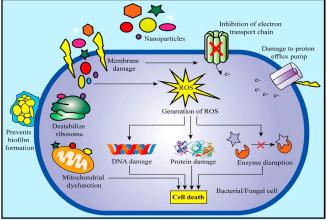
Fig. 1: Nanomaterials as protectants or carriers to provide crop protection and their benefits (Worrall *et al.*, 2018).

and boosting site-specific uptake on target pests (Hayles *et al.*, 2017). Another possible benefits of nanocarriers includes increase in efficacy of the activity and stability of the nanopesticides under environmental pressure (UV and rain), significantly reducing the number of applications, thereby decreasing toxicity and reducing their costs (Fig. 1) (Worrall *et al.*, 2018).

Gene transfer via nanoparticles: A molecular approach in plant protection

The amalgamation of biotechnology with nanotechnology develops a new tool for gene transfer and drug delivery. Manipulation in gene expression is successfully achieved by researchers by utilizing nanofibers, nanocapsules, and nanoparticles (Agrawal and Rathore, 2014). The conventional methods of gene transfer face several challenges during transfer of genetic materials by viral vectors whereas nanotechnology-based gene transfer provides a more convenient approach. Application of DNA coated silver nanoparticles in addition to ethylene glycol successfully transferred plasmatic DNA into the isolated protoplast of the petunia plant (Rad et al., 2013). CRISPR/Cas9 system is a revolutionary invention in molecular biology that changes the biotechnological practice forever. CRISPR/Cas9 is an RNA-mediated genome editing system that comprises two components, a small stretch of repeated sequence and Cas9 protein.

Transfer of CRISPR/Cas9 single guide RNA (sg-RNA) through nanotechnology opens a new era for plant disease management (Miller et al., 2017). Application of nanoparticles in delivery of CRISPR/Cas9 system improves its specificity and efficiency for the target genome editing (Mout et al., 2017). Chitosan, a natural biopolymer having several bioactivities, including antimicrobial properties against several pathogenic microbes. Chitosan NPs are good choices for drug delivery and genome transfer as their transfection efficiency can be modified using various chemical agents such as polyethylene glycol (PEG). One of the benefits of using chitosan NP is that they can easily bind to RNA and can cross the plasma membrane, enabling their use as an excellent gene transfer vehicle. Chitosan nanoparticles can transfer si-RNA, improving disease tolerance against various pests and pathogens in crop plants (Zhang et al., 2010; Gaur et al., 2020). SiO₂NP mediated gene transfer has been carried out in Nicotiana tabacum and Zea mays which induced significant disease resistance (Galbraith, 2007). Gene modification in various crops can be achieved using DNA-coated nanoparticles mediated gene gun technology (Vijayakumar et al., 2010). In another study, genome editing has been done in Zea


mays immature embryo by using mesosporous silica nanoparticles (MSNPs). The MSNPs are used to carry Cre-recombinase which is correctly recombined in the chromosomal DNA by lox P in maize (Martin-Ortigosa et al., 2014). Recently a study was conducted where carbon nanotubes were used for si-RNA mediated gene transfer in *Triticum aestivum*, *Nicotiana benthamiana*, *Gossypium hirsutum* and *Eruca sativa*. Among which 95% si-RNA mediated gene silencing has occurred in *N. benthamiana* (Demirer et al., 2019).

Antimicrobial mechanism of nanoparticles

Lemire *et al.*, (2013) proposed five theories about the antimicrobial mechanism of metal nanoparticles as:

- (1) release of toxic ions (Cd²⁺, Zn²⁺, Ag⁺) that can bind to sulphur-containing proteins, this accumulation prevents the proteins from properly functioning in the membrane and interfere in cell permeability;
- (2) genotoxic toxic ions that can destroy DNA which leads to cell death;
- (3) interruption of electron transport, protein oxidation and membrane potential collapse due to its contact with CeO₂ or nC₆₀;
- (4) generation of ROS (reactive oxygen species) ROS-mediated cellular damage, and different metal-catalyzed oxidation reactions could underline specific types of protein, membrane or DNA damage;
- (5) interference with nutrient uptake.

Nanoparticles disrupt the polymer subunits of pathogen's cell membrane. It was reported that antimicrobial property of metal nanoparticles largely depends upon several parameters including size, shape and the surface charge of the particles. Treatment of

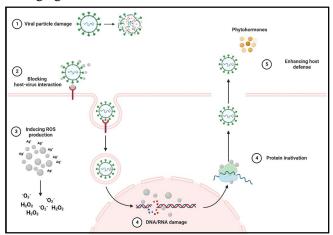


Fig. 2: Schematic representation of antimicrobial (fungal and/ or bacterial) mechanisms of various nanoparticles (Sharmin *et al.*, 2021).

fungal pathogen with nanoparticles causes deformations in hyphae and led to the death of fungal hyphae. In case of Ag NPs several studies demonstrated that positive charge on the Ag ⁺ ion is crucial for its antimicrobial activity through the electrostatic attraction between the negative charges on the nanoparticles. Ag ions inactivate the proteins with SH-groups (Sulphydryl group) and prevent the ability of DNA to replicate (Feng *et al.*, 2000).

Accumulation of NPs and ions on cell wall by forming pores leading, out flow of intracellular components and shrinkage of fungal mycelium. It attacks membrane lipid bilayer and disturbs the membrane potential, inhibit the germination of conidia and suppress conidial development. Nanoparticles affect mitochondrial membrane potential that increases the transcript level of stress response genes such as SOD₂, ShSOD₂ and Shgst1 leading generation of oxidative burst. It also causes genotoxic effect and destroys DNA. Interaction with proteins containing SH-groups cause protein denaturation. All this activity causes fungal cell death.

Bacterial infection in agroecosystem leads to prolonged contamination and mass mortality. For treatment of bacterial infection antibiotics are used as they are readily available and effectively control bacterial phytopathogens. But some bacteria have developed resistance to almost all kind of antibiotics. Nanoparticles have the ability to prevent resistance in bacteria because mode of action of nanoparticles is directly linked with bacterial cell wall. So, it would be possible that new NPs-based materials can perform antibacterial activity (Wang et al., 2017). Antibacterial properties of nanoparticles are reported by many researchers (Cabiscol et al., 2007; Gurunathan et al., 2009). and it was due to physical destruction of the bacterial cell wall or by oxidative stress through generation of ROS.

Fig. 3: Schematic representation of antiviral mechanisms of various nanoparticles (dos Santos *et al.*, 2024).

Plant viruses are responsible for 47% of all crop losses brought by plant diseases. Nanoparticles can also be used to precisely detect plant viruses using nanobiosensors or as biostimulants. Nanophytovirology is the application of nanotechnology in plant virology, and it involves biostimulation, drug transport, genetic manipulation, therapeutic agents, and introduction of plant defenses. The antiviral mechanism of nanoparticles involves inactivation and denaturation of capsid protein, nucleic acids (RNA or DNA), and other protein constituents are involved in the underlying mechanism (Warghane *et al.*, 2024).

Conclusions

Application of nanotechnology is providing the significant opportunities to treat phytopathogens by minimizing excess use of chemical pesticides. Innovations always result in both drawbacks and benefits for human and environmental health. As application of nanotechnology in agriculture is in its initial phase, so before using nanoparticles or nanopesticides in plant disease management, further studies and extensive experimental trials are needed to evaluate the effects of nanopesticides on host plant, pathogens, host-pathogens interaction, disease development, disease diagnosis, beneficial microbes, animals, human beings and environment that will help in developing strategies to manage disease through nanopesticides that are cheap ecofriendly and less harmful than conventional pesticides.

Acknowledgements

The first author thankfully acknowledges the institutional support received from Nalanda College of Horticulture, Noorsarai, Nalanda. The first author expresses her sincere gratitude to the Directorate of Research, Bihar Agricultural University (BAU), Sabour, Bhagalpur for providing the BAU Communication Number (2097/250516) for this manuscript.

References

- AD, B., PM N. and BV B. (2013). Fungicidal potential of biosynthesized silver nanoparticles against phytopathogens and potentiation of fluconazole. *World*, **1**(1), 12-15. http://www.bioinfopublication.org/jouarchive.php?opt=andjouid=BPJ0000294.
- Agrawal, S. and Rathore P. (2014). Nanotechnology pros and cons to agriculture: a review. *Int J Curr Microbiol App Sci*, **3(3)**, 43-55.
- Ahmad, A., Senapati S., Khan M.I., Kumar R. and Sastry M. (2005). Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. *Journal of Biomedical Nanotechnology*, **1**(1), 47-53. DOI: https://doi.org/10.1166/jbn.2005.012

- Ahmad, A., Senapati S., Khan M.I., Kumar R. and Sastry M. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, *Thermomonospora* sp. *Langmuir*, **19(8)**, 3550-3553. DOI: 10.1021/la0267721.
- Ahmad, S., Munir S., Zeb N., Ullah A., Khan B., Ali J. and Ali S. (2019). Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. *International journal of nanomedicine*, 5087-5107. https://doi.org/10.2147/IJN.S200254
- Ahmadov, I.S., Ramazanov M.A., Sienkiewicz A. and Forro L. (2014). Uptake and intracellular trafficking of superparamagnetic iron oxide nanoparticles (spions) in plants. *Digest Journal of Nanomaterials and Biostructures*, 9(3), 1149-1157.
- Alkubaisi, N.A.O., Aref N.M.M.A. and Hendi A.A. (2015). Method of inhibiting plant virus using gold nanoparticles. *US Patents US9198434B1*, **1**, 64-70. http://fac.ksu.edu.sa/sites/default/files/patent_doc.pdf
- Annamalai, J. and Nallamuthu T. (2016). Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. *Applied nanoscience*, **6(2)**, 259-265. https://doi.org/10.1007/s13204-015-0426-6
- Awwad, A.M., Albiss B.A. and Salem N.M. (2015). Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. *SMU Med J*, **2(1)**, 91-101.
- Ayisigi, M., Cokislerel A., Kucukcobanoglu Y., Yalcin T. and Aktas L.Y. (2020). Green synthesized silver nanoparticles for an effective control on soft rot disease pathogen *Pectobacterium carotovorum* and growth stimulation in pepper. *Bulgarian J. of Agricultural Science*, **26(3)**.
- Baac, H., Hajós J.P., Lee J., Kim D., Kim S.J. and Shuler M.L. (2006). Antibody based surface plasmon resonance detection of intact viral pathogen. *Biotechnology and bioengineering*, **94(4)**, 815-819. https://doi.org/10.1002/bit.20882.
- Banerjee, A., Sarkar A., Acharya K. and Chakraborty N. (2021). Nanotechnology: an emerging hope in crop improvement. *Letters in Applied NanoBioScience*, **10(4)**, 2784-2803. https://doi.org/10.33263/LIANBS104.27842803.
- Bankar, A., Joshi B., Kumar A.R. and Zinjarde S. (2010). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **368(1-3)**, 58-63. https://doi.org/10.1016/j.colsurfa.2010.07.024.
- Barwal, I., Ranjan P., Kateriya S. and Yadav S.C. (2011). Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. *Journal of nanobiotechnology*, **9(1)**, 56. https://doi.org/10.1186/1477-3155-9-56
- Basavaraja, S., Balaji, S.D., Lagashetty A., Rajasab A.H. and Venkataraman A.J.M.R.B. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. *Materials Research Bulletin*, **43(5)**, 1164-1170. https://doi.org/10.1016/j.materresbull. 2007.06.020.

- Bergeson, L.L. (2010). Nanosilver pesticide products: what does the future hold?. *Environmental Quality Management*, **19(4)**. DOI 10.1002/tqem.20263.
- Berry, T.D., Filley T.R. and Blanchette R.A. (2014). Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes. *Environmental Pollution*, **193**, 197-204. https://doi.org/10.1016/j.envpol.2014.06.013
- Bora, K.A., Hashmi S., Zulfiqar F., Abideen Z., Ali H., Siddiqui Z.S. and Siddique K.H. (2022). Recent progress in biomediated synthesis and applications of engineered nanomaterials for sustainable agriculture. *Frontiers in Plant Science*, **13**, 999505. https://doi.org/10.3389/fpls.2022.999505
- Boxi, S.S., Mukherjee K. and Paria S. (2016). Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. *Nanotechnology*, **27(8)**, 085103. DOI 10.1088/0957-4484/27/8/085103
- Brayner, R., Coradin T., Beaunier P., Grenèche J.M., Djediat C., Yéprémian C. and Fiévet F. (2012). Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. *Colloids and Surfaces B: Biointerfaces*, **93**, 20-23. https://doi.org/10.1016/j.colsurfb.2011.10.014
- Brecht, M.O., Datnoff L.E., Kucharek T.A. and Nagata R.T. (2004). Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustinegrass. *Plant disease*, **88(4)**, 338-344. https://doi.org/10.1094/PDIS.2004.88.4.338
- Brunel, F., El Gueddari N.E. and Moerschbacher B.M. (2013). Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. *Carbohydrate polymers*, **92(2)**, 1348-1356. https://doi.org/10.1016/j.carbpol.2012.10.025
- Cabiscol Catalâ, E., Tamarit Sumalla J. and Ros Salvador J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species.
- Castro-Longoria, E., Vilchis-Nestor A.R. and Avalos-Borja M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. *Colloids and surfaces B: Biointerfaces*, **83**(1), 42-48. https://doi.org/10.1016/j.colsurfb.2010.10.035
- Chandra, S., Chakraborty N., Dasgupta A., Sarkar J., Panda K. and Acharya K. (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. *Scientific reports*, **5**(1), 15195. DOI: 10.1038/srep15195
- Chandran, S.P., Chaudhary M., Pasricha R., Ahmad A. and Sastry M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. *Biotechnology progress*, **22(2)**, 577-583. https://doi.org/10.1021/bp0501423
- Chartuprayoon, N., Rheem Y., Ng J.C., Nam J., Chen W. and Myung N.V. (2013). Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. *Analytical Methods*, **5(14)**, 3497-3502. https://doi.org/10.1039/C3AY40371H

- Chen, J., Wang X. and Han H. (2013). A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. *Journal of nanoparticle research*, **15**(5), 1658. https://doi.org/10.1007/s11051-013-1658-6
- Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. *Environmental chemistry letters*, **15**(1), 15-22. https://doi.org/10.1007/s10311-016-0600-4
- Chu, H., Kim H.J., Kim J.S., Kim M.S., Yoon B.D., Park H.J. and Kim C.Y. (2012). A nanosized Ag–silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis. *Radiation Physics and Chemistry*, 81(2), 180-184. https://doi.org/10.1016/j.radphyschem.2011. 10.004
- Demirer, G.S., Zhang H., Matos J.L., Goh N.S., Cunningham F.J., Sung Y. and Landry M.P. (2019). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. *Nature nanotechnology*, **14(5)**, 456-464. https://doi.org/10.1038/s41565-019-0382-5
- Derbalah, A.S.H. and Elsharkawy M.M. (2019). A new strategy to control Cucumber mosaic virus using fabricated NiOnanostructures. *Journal of Biotechnology*, **306**, 134-141. https://doi.org/10.1016/j.jbiotec.2019.10.003
- Dhas, T.S., Kumar V.G., Karthick V.A.K.J., Angel K.J. and Govindaraju K. (2014). Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **120**, 416-420. https://doi.org/10.1016/j.saa.2013.10.044
- Dimkpa, C.O., Latta D.E., McLean J.E., Britt D.W., Boyanov M.I. and Anderson A.J. (2013). Fate of CuO and ZnO nano-and microparticles in the plant environment. *Environmental science and technology*, **47(9)**, 4734-4742. DOI: 10.1021/es304736y
- Dos Santos, O.A.L., Dos Santos M.S., Antunes Filho S. and Backx B.P. (2024). Nanotechnology for the control of plant pathogens and pests. *Plant nano biology*, **8**, 100080. https://doi.org/10.1016/j.plana.2024.100080
- Du, L., Xian L. and Feng J.X. (2011). Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. *Journal of Nanoparticle Research*, **13**(3), 921-930. https://doi.org/10.1007/s11051-010-0165-2
- Dwivedi, A.D. and Gopal K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **369(1-3)**, 27-33. https://doi.org/10.1016/j.colsurfa.2010.07.020
- El-Hadrami, A., Adam L.R., El-Hadrami I. and Daayf F. (2010). Chitosan in plant protection. *Marine drugs*, **8(4)**, 968-987. https://doi.org/10.3390/md8040968
- Elbeshehy, E.K., Elazzazy A.M. and Aggelis G (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. *Frontiers in microbiology*, **6**, 453. https://doi.org/10.3389/fmicb.2015.00453

- Elmer, W. and White J.C. (2018). The future of nanotechnology in plant pathology. *Annual review of phytopathology*, **56(1)**, 111-133. https://doi.org/10.1146/annurev-phyto-080417-050108
- Fajar, M.N., Endarko E., Rubiyanto A., Malek N.A.N.N., Hadibarata T. and Syafiuddin A. (2020). A green deposition method of silver nanoparticles on textiles and their antifungal activity. *Biointerface Research in Applied Chemistry*, 10(1), 4902-4907. DOI: 10.33263/ BRIAC101.902907
- Feng, Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N. and Kim J.O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. *Journal of biomedical materials research*, **52(4)**, 662-668.
- Gade, A., Rai M.K., Karwa A., Bonde P. and Ingle A. (2007). Extracellular biosynthesis of silver nanoparticles by Pleurotus species. *International Journal of Medicinal Mushrooms*, **9**(3/4), 298.
- Gajbhiye, M., Kesharwani J., Ingle A., Gade A. and Rai M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. *Nanomedicine: Nanotechnology, Biology and Medicine,* **5(4)**, 382-386. https://doi.org/10.1016/j.nano.2009.06.005
- Galbraith, D.W. (2007). Silica breaks through in plants. *Nature Nanotechnology*, **2(5)**, 272-273. https://doi.org/10.1038/nnano.2007.118
- Gaur, P.K., Pal H., Puri D., Kumar N. and Shanmugam S.K. (2020). Formulation and development of hesperidin loaded solid lipid nanoparticles for diabetes. *Biointerface Res. Appl. Chem.*, **10**, 4728-4733.
- Ghormade, V., Deshpande M.V. and Paknikar K.M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. *Biotechnology advances*, **29(6)**, 792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007
- Giannousi, K., Avramidis I. and Dendrinou-Samara C. (2013). Synthesis, characterization and evaluation of copperbased nanoparticles as agrochemicals against Phytophthora infestans. *RSC advances*, **3(44)**, 21743-21752. https://doi.org/10.1039/C3RA42118J
- Gogoi, R., Dureja P. and Singh P.K. (2009). Nanoformulations a safer and effective option for agrochemicals. *Indian Farming*, **59(8)**, 7-12.
- Graham, J.H., Johnson E.G., Myers M.E., Young M., Rajasekaran P., Das S. and Santra S. (2016). Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. *Plant disease*, **100(12)**, 2442-2447. https://doi.org/10.1094/PDIS-05-16-0598-RE
- Guilger, M., Pasquoto-Stigliani T., Bilesky-Jose N., Grillo R., Abhilash P.C., Fraceto L.F. and Lima R.D. (2017). Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. *Scientific reports*, 7(1), 44421. https://doi.org/10.1038/srep44421
- Gurunathan, S., Han J.W., Dayem A.A., Eppakayala V. and

- Kim J.H. (2012). Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. *International journal of nanomedicine*, 5901-5914. https://doi.org/10.2147/IJN.S37397
- Gurunathan, S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian S.R.K., Muniyandi J. and Eom S.H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. *Colloids and Surfaces B: Biointerfaces*, 74(1), 328-335. https://doi.org/10.1016/j.colsurfb.2009.07.048
- Hao, Y., Cao X., Ma C., Zhang Z., Zhao N., Ali A. and Rui Y. (2017). Potential applications and antifungal activities of engineered nanomaterials against grey mold disease agent Botrytis cinerea on rose petals. *Frontiers in plant science*, 8, 1332. https://doi.org/10.3389/fpls.2017.01332
- Hayles, J., Johnson L., Worthley C. and Losic D. (2017). Nanopesticides: a review of current research and perspectives. *New pesticides and soil sensors*, 193-225. https://doi.org/10.1016/B978-0-12-804299-1.00006-0
- He, L., Liu Y., Mustapha A. and Lin M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. *Microbiological research*, **166(3)**, 207-215. https://doi.org/10.1016/j.micres.2010.03.003
- Husseiny, M.I., Abd El-Aziz M., Badr Y. and Mahmoud M.A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **67(3-4)**, 1003-1006. https://doi.org/10.1016/j.saa.2006.09.028
- Imada, K., Sakai S., Kajihara H., Tanaka S. and Ito S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. *Plant Pathology*, **65(4)**, 551-560. https://doi.org/10.1111/ppa.12443
- Indhumathy, M. and Mala R. (2013). Photocatalytic activity of zinc sulphate nano material on phytopathogens. *International Journal of Agriculture, Environment and Biotechnology*, **6(4S)**, 737.
- Jagana, D., Hegde Y.R. and Lella R. (2017). Green nanoparticles: A novel approach for the management of banana anthracnose caused by Colletotrichum musae. *Int. J. Curr. Microbiol. Appl. Sci*, **6(10)**, 1749-56. https://doi.org/10.20546/ijcmas.2017.610.211
- Jain, D. and Kothari S.L. (2014). Green synthesis of silver nanoparticles and their application in plant virus inhibition. *J Mycol plant pathol*, **44(1)**, 21-24.
- Jung, J.H., Kim S.W., Min J.S., Kim Y.J., Lamsal K., Kim K.S. and Lee Y.S. (2010). The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. *Mycobiology*, 38(1), 39-45. https://doi.org/10.4489/MYCO.2010.38.1.039
- Kah, M. and Hofmann T. (2014). Nanopesticide research: current trends and future priorities. *Environment international*, 63, 224-235. https://doi.org/10.1016/j.envint.2013.11.015

- Kah, M., Beulke S., Tiede K. and Hofmann T. (2013). Nanopesticides: state of knowledge, environmental fate, and exposure modeling. *Critical Reviews in Environmental Science and Technology*, **43(16)**, 1823-1867. https://doi.org/10.1080/10643389.2012.671750
- Kah, M., Navarro D., Kookana R.S., Kirby J.K., Santra S., Ozcan A. and Kabiri S. (2019). Impact of (nano) formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. *Environmental Chemistry*, **16(6)**, 401-410. https://doi.org/10.1071/EN18279
- Kalishwaralal, K., Deepak V., Pandian S.R.K., Kottaisamy M., BarathManiKanth S., Kartikeyan B. and Gurunathan S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. *Colloids and surfaces B: Biointerfaces*, 77(2), 257-262. https://doi.org/10.1016/j.colsurfb.2010.02.007
- Kashyap, P.L., Xiang X. and Heiden P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. *International journal of biological macromolecules*, **77**, 36-51. https://doi.org/10.1016/j.ijbiomac.2015.02.039
- Kaur, P., Thakur R. and Chaudhury A. (2016). Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. *Green Chemistry Letters and Reviews*, 9(1), 33-38. https://doi.org/10.1080/17518253. 2016.1141238
- Khaledian, S., Nikkhah M., Shams-bakhsh M. and Hoseinzadeh S. (2017). A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. *Journal of General Plant Pathology*, **83(4)**, 231-239. https://doi.org/10.1007/s10327-017-0721-z
- Khot, L.R., Sankaran S., Maja J.M., Ehsani R. and Schuster E.W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. *Crop protection*, **35**, 64-70. https://doi.org/10.1016/j.cropro. 2012.01.007
- Kim, H.S., Kang H.S., Chu G.J. and Byun H.S. (2008). Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. *Solid state phenomena*, 135, 15-18. https://doi.org/10.4028/www.scientific.net/SSP.135.15
- Kora, A.J., Beedu S.R. and Jayaraman A. (2012). Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. *Organic and medicinal chemistry letters*, **2(1)**, 17. https://doi.org/10.1186/2191-2858-2-17
- Krishnaraj, C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T. and Mohan N.J.C.S.B.B. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. *Colloids and Surfaces B: Biointerfaces*, **76(1)**, 50-56. https://doi.org/10.1016/j.colsurfb.2009.10.008
- Kumar, R., Najda A., Duhan J.S., Kumar B., Chawla P., Klepacka J. and Poonia A.K. (2021). Assessment of antifungal

- efficacy and release behavior of fungicide-loaded chitosan-carrageenan nanoparticles against phytopathogenic fungi. *Polymers*, **14(1)**, 41. https://doi.org/10.3390/polym14010041
- Kurbanoglu, S. and Ozkan S.A. (2018). Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. *Journal of pharmaceutical and* biomedical analysis, 147, 439-457. https://doi.org/ 10.1016/j.jpba.2017.06.062
- Lamsal, K., Kim S.W., Jung J.H., Kim Y.S., Kim K.S. and Lee Y.S. (2011). Application of silver nanoparticles for the control of *Colletotrichum* species in vitro and pepper anthracnose disease in field. *Mycobiology*, **39**(3), 194-199. https://doi.org/10.5941/MYCO.2011.39.3.194
- Lemire, J.A., Harrison J.J. and Turner R.J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. *Nature Reviews Microbiology*, **11(6)**, 371-384. https://doi.org/10.1038/nrmicro3028
- Lin, P.C., Lin S., Wang P.C. and Sridhar R. (2014). Techniques for physicochemical characterization of nanomaterials. *Biotechnology advances*, **32(4)**, 711-726. https://doi.org/10.1016/j.biotechadv.2013.11.006
- López, M.M., Llop P., Olmos A., Marco-Noales E., Cambra M. and Bertolini E. (2009). Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses?. *Current issues in molecular biology*, 11, 13-45. http://dx.doi.org/10.21775/cimb. 011.013
- Mahdavi, M., Namvar F., Ahmad M.B. and Mohamad R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. *Molecules*, **18**(5), 5954-5964. https://doi.org/10.3390/molecules18055954
- Malandrakis, A.A., Kavroulakis N. and Chrysikopoulos C.V. (2019). Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. *Science of the total environment*, **670**, 292-299. https://doi.org/10.1016/j.scitotenv.2019.03.210
- Malerba, M. and Cerana R. (2016). Chitosan effects on plant systems. *International journal of molecular sciences*, **17(7)**, 996. https://doi.org/10.3390/ijms17070996
- Marchiol, L. (2012). Synthesis of metal nanoparticles in living plants. *Italian Journal of Agronomy*, **7(3)**, e37. https://doi.org/10.4081/ija.2012.e37
- Martin-Ortigosa, S., Peterson D.J., Valenstein J.S., Lin V.S.Y., Trewyn B.G., Lyznik L.A. and Wang K. (2014). Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. *Plant physiology*, **164(2)**, 537-547. https://doi.org/10.1104/pp.113.233650
- Matouskova, P., Marova I., Bokrova J. and Benesova P. (2016). Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. *Food technology and biotechnology*, **54(3)**, 304-316. https://doi.org/10.17113/ftb.54.03.16.4413
- Miller, J.B., Zhang S., Kos P., Xiong H., Zhou K., Perelman S.S.

- and Siegwart D.J. (2017). Non viral CRISPR/Cas gene editing *in vitro* and *in vivo* enabled by synthetic nanoparticle co delivery of Cas9 mRNA and sgRNA. *Angewandte Chemie*, **129(4)**, 1079-1083.
- Min, J.S., Kim K.S., Kim S.W., Jung J.H., Lamsal K., Kim S.B. and Lee Y.S. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. *The Plant Pathology Journal*, **25(4)**, 376-380. https://doi.org/10.5423/PPJ.2009.25.4.376
- Mishra, S., Singh B.R., Singh A., Keswani C., Naqvi A.H. and Singh H.B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. *Plos one*, **9(5)**, e97881. https://doi.org/10.1371/journal.pone.0097881
- Mittal, A.K., Chisti Y. and Banerjee U.C. (2013). Synthesis of metallic nanoparticles using plant extracts. *Biotechnology advances*, **31(2)**, 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
- Mondal, K.K. and Mani C. (2012). Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. *Annals of microbiology*, 62(2), 889-893. https://doi.org/10.1007/s13213-011-0382-7
- Mourdikoudis, S., Pallares R.M. and Thanh N.T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. *Nanoscale*, **10**(**27**), 12871-12934. https://doi.org/10.1039/C8NR02278J
- Mout, R., Ray M., Lee Y.W., Scaletti F. and Rotello V.M. (2017). In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. *Bioconjugate chemistry*, 28(4), 880-884. DOI: 10.1021/acs.bioconjchem.7b00057
- Mukherjee, P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I. and Kumar R. (2001). Bioreduction of AuCl4ions by the fungus, *Verticillium* sp. and surface trapping of the gold nanoparticles formed. *Angewandte Chemie-International Edition*, **40(19)**, 3585-3588. https://doi.org/10.1002/1521-3773(20011001)40:19%3C3585::AID-ANIE3585%3E3.0.CO;2-K
- Mukunthan, K.S. and Balaji S. (2012). Cashew apple juice (*Anacardium occidentale* L.) speeds up the synthesis of silver nanoparticles. *International Journal of Green Nanotechnology*, **4(2)**, 71-79. https://doi.org/10.1080/19430892.2012.676900
- Munir, N., Tariq R., Abideen Z., Hasnain M., Hussain M.I. and Haq R. (2023). Efficient detoxification of textile wastewater by applying Chenopodium album nanoparticles and its application in simulated metal-bearing effluents removal. *Environmental Science and Pollution Research*, **30(21)**, 60890-60906. https://doi.org/10.1007/s11356-023-26795-8
- Namvar, F., Azizi S., Ahmad M.B., Shameli K., Mohamad R., Mahdavi M. and Tahir P.M. (2015). Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. *Research on Chemical Intermediates*, 41(8), 5723-5730. https://doi.org/10.1007/ s11164-014-1696-4

- Nandhini, M., Rajini S.B., Udayashankar A.C., Niranjana S.R., Lund O.S., Shetty H.S. and Prakash H.S. (2019). Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. *Crop Protection*, 121, 103-112. https://doi.org/10.1016/j.cropro.2019.03.015
- Narayanan, K.B. and Sakthivel N. (2010). Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. *Materials characterization*, **61(11)**, 1232-1238. https://doi.org/10.1016/j.matchar.2010.08.003
- Nithya, R. and Ragunathan R. (2009). Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. *Digest Journal of Nanomaterials and Biostructures*, **4(4)**, 623-629.
- Nuruzzaman, M.D., Rahman M.M., Liu Y. and Naidu R. (2016). Nanoencapsulation, nano-guard for pesticides: a new window for safe application. *Journal of agricultural and food chemistry*, **64(7)**, 1447-1483. DOI: 10.1021/acs.jafc. 5b05214
- Ocsoy, I., Paret M.L., Ocsoy M.A., Kunwar S., Chen T., You M. and Tan W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. *ACS nano*, **7(10)**, 8972-8980. DOI: 10.1021/nn4034794
- Oh, S.D., Lee S., Choi S.H., Lee I.S., Lee Y.M., Chun J.H. and Park H.J. (2006). Synthesis of Ag and Ag–SiO2 nanoparticles by γ-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar Typhimurium and Botrytis cinerea. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **275**(1-3), 228-233. https://doi.org/10.1016/j.colsurfa.2005.11.039
- Paret, M.L., Vallad G.E., Averett D.R., Jones J.B. and Olson S.M. (2013). Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. *Phytopathology*, **103**(3), 228-236. https://doi.org/10.1094/PHYTO-08-12-0183-R
- Parida, U.K., Bindhani B.K. and Nayak P. (2011). Green synthesis and characterization of gold nanoparticles using onion (*Allium cepa*) extract. *World Journal of Nano Science and Engineering*, **1(4)**, 93-98. http://dx.doi.org/10.4236/wjnse.2011.14015
- Park, H.J., Kim S.H., Kim H.J. and Choi S.H. (2006). A new composition of nanosized silica-silver for control of various plant diseases. *Plant Pathology Journal*, **22(3)**, 295-302.
- Perdikaris, A., Vassilakos N., Yiakoumettis I., Kektsidou O. and Kintzios S. (2011). Development of a portable, high throughput biosensor system for rapid plant virus detection. *Journal of virological methods*, **177(1)**, 94-99. https://doi.org/10.1016/j.jviromet.2011.06.024
- Phanjom, P. and Ahmed G. (2015). Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. *Nanoscience and Nanotechnology*, **5(1)**, 14-21. DOI: 10.5923/j.nn. 20150501.03

- Pimentel, D. (1995). Amounts of pesticides reaching target pests: environmental impacts and ethics. *Journal of Agricultural and environmental Ethics*, **8(1)**, 17-29. https://doi.org/10.1007/BF02286399
- Ponmurugan, P., Manjukarunambika K., Elango V. and Gnanamangai B.M. (2016). Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. *Journal of Experimental Nanoscience*, **11(13)**, 1019-1031. https://doi.org/10.1080/17458080.2016.1184766
- Prasad, T.N., Kambala V.S.R. and Naidu R. (2013). Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. *Journal of applied phycology*, **25(1)**, 177-182. https://doi.org/10.1007/s10811-012-9851-z
- Rad, S.J., Naderi R., Alizadeh H. and Yaraghi A.S. (2013). Silvernanoparticle as a vector in gene delivery by incubation. *International Research Journal of Applied Life Sciences*, **2(21)**, 33.
- Rafique, M., Sadaf I., Rafique M.S. and Tahir M.B. (2017). A review on green synthesis of silver nanoparticles and their applications. *Artificial cells, nanomedicine, and biotechnology*, **45(7)**, 1272-1291. https://doi.org/10.1080/21691401.2016.1241792
- Ramesh, P.S., Kokila T. and Geetha D. (2015). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 142, 339-343. https://doi.org/10.1016/j.saa.2015.01.062
- Rana, A., Kumari A., Chaudhary A.K., Srivastava R., Kamil D., Vashishtha P. and Sharma S.N. (2023). An investigation of antimicrobial activity for plant pathogens by greensynthesized silver nanoparticles using *Azadirachta indica* and *Mangifera indica*. *Physchem*, **3(1)**, 125-146. https://doi.org/10.3390/physchem3010010
- Rao, K.J. and Paria S. (2013). Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. *RSC advances*, **3(26)**, 10471-10478. https://doi.org/10.1039/C3RA40500A
- Reddy, A.S., Chen C.Y., Chen C.C., Jean J.S., Chen H.R., Tseng M.J. and Wang J.C. (2010). Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. *Journal of nanoscience and nanotechnology*, **10(10)**, 6567-6574. https://doi.org/10.1166/jnn.2010.2519
- Richards, R.M. (1981). Antimicrobial action of silver nitrate. *Microbios*, **31**(124), 83-91. PMID: 6799750
- Safarpour, H., Safarnejad M.R., Tabatabaei M., Mohsenifar A., Rad F., Basirat M. and Hasanzadeh F. (2012). Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. *Canadian Journal of Plant Pathology*, **34(4)**, 507-515. https://doi.org/10.1080/07060661.2012.709885
- Saharan, V., Mehrotra A., Khatik R., Rawal P., Sharma S.S. and Pal A. (2013). Synthesis of chitosan based nanoparticles and their *in vitro* evaluation against phytopathogenic

- fungi. *International journal of biological macromolecules*, **62**, 677-683. https://doi.org/10.1016/j.ijbiomac.2013.10.012
- Sanghi, R. and Verma P. (2009). A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. *Chemical Engineering Journal*, **155(3)**, 886-891. https://doi.org/10.1016/j.cej.2009.08.006
- Sardella, D., Gatt R. and Valdramidis V.P. (2017). Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. *Food Research International*, **101**, 274-279. https://doi.org/10.1016/j.foodres.2017.08.019
- Sarkar, J., Chakraborty N., Chatterjee A., Bhattacharjee A., Dasgupta D. and Acharya K. (2020). Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. *Nanomaterials*, **10(2)**, 312. https://doi.org/10.3390/nano10020312
- Sathishkumar, M., Sneha K. and Yun Y.S. (2009). Palladium nanocrystal synthesis using Curcuma longa tuber extract. *Int J Mater Sci*, **4(1)**, 11-17. http://www.ripublication.com/ijoms.htm
- Sawangphruk, M., Srimuk P., Chiochan P., Sangsri T. and Siwayaprahm P. (2012). Synthesis and antifungal activity of reduced graphene oxide nanosheets. *Carbon*, **50**(**14**), 5156-5161. https://doi.org/10.1016/j.carbon.2012.06.056
- Sekhon, B.S. (2014). Nanotechnology in agri-food production: an overview. *Nanotechnology, science and applications*, 31-53. https://doi.org/10.2147/NSA.S39406
- Seo, Y.C., Cho J.S., Jeong H.Y., Yim T.B., Cho K.S., Lee T.W. and Lee H.Y. (2011). Enhancement of antifungal activity of anthracnose in pepper by nanopaticles of thiamine dilauryl sulfate. *Korean Journal of Medicinal Crop Science*, **19**(3), 198-204. https://doi.org/10.7783/KJMCS.2011.19.3.198
- Shafie, R.M., Salama A.M. and Farroh K.Y. (2018). Silver nanoparticles activity against Tomato spotted wilt virus. *Middle East J. Agric. Res*, **7**, 1251-1267.
- Shah, S.N., Steinmetz N.F., Aljabali A.A., Lomonossoff G.P. and Evans D.J. (2009). Environmentally benign synthesis of virus-templated, monodisperse, iron-platinum nanoparticles. *Dalton transactions*, (40), 8479-8480. https://doi.org/10.1039/B906847C
- Shang, Y., Hasan M.K., Ahammed G.J., Li M., Yin H. and Zhou J. (2019). Applications of nanotechnology in plant growth and crop protection: a review. *Molecules*, **24(14)**, 2558. https://doi.org/10.3390/molecules24142558
- Sharmin, S., Rahaman M.M., Sarkar C., Atolani O., Islam M.T. and Adeyemi O.S. (2021). Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. *Heliyon*, **7(3)**. https://doi.org/10.1016/j.heliyon. 2021.e06456
- Sharon, M., Choudhary A.K. and Kumar R. (2010). Nanotechnology in agricultural diseases and food safety. *Journal of phytology*, **2(4)**. http://www.journal-phytology.com/

- Shenashen, M., Derbalah A., Hamza A., Mohamed A. and El-Safty S. (2017). Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. *Pest management science*, **73(6)**, 1121-1126. https://doi.org/10.1002/ps.4420
- Singh, A., Jain D., Upadhyay M.K., Khandelwal N. and Verma H.N. (2010). Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. *Dig J Nanomater Bios*, **5(2)**, 483-489.
- Singh, D., Rathod V., Ninganagouda S., Hiremath J., Singh A.K. and Mathew J. (2014). Optimization and characterization of silver nanoparticle by endophytic fungi *Penicillium* sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. *Bioinorganic chemistry and applications*, 2014(1), 408021. https://doi.org/10.1155/2014/408021
- Singh, J., Dutta T., Kim K.H., Rawat M., Samddar P. and Kumar P. (2018). 'Green'synthesis of metals and their oxide nanoparticles: applications for environmental remediation. *Journal of nanobiotechnology*, **16(1)**, 84. https://doi.org/10.1186/s12951-018-0408-4
- Slocik, J.M., Naik R.R., Stone M.O. and Wright D.W. (2005). Viral templates for gold nanoparticle synthesis. *Journal of Materials Chemistry*, 15(7), 749-753. https://doi.org/10.1039/B413074J
- Soltani Nejad, M., Bonjar G.H.S., Khatami M., Amini A. and Aghighi S. (2017). In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. *IET nanobiotechnology*, **11(3)**, 236-240. https://doi.org/10.1049/iet-nbt.2015.0121
- Sun, J., DuFort C., Daniel M.C., Murali A., Chen C., Gopinath K. and Dragnea B. (2007). Core-controlled polymorphism in virus-like particles. *Proceedings of the National Academy of Sciences*, **104(4)**, 1354-1359. https://doi.org/10.1073/pnas.0610542104
- Swamy, V.S. and Prasad R. (2012). Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. *J Optoelectron Biomed Mater*, **4(3)**, 53-59.
- Torney, F., Trewyn B.G., Lin V.S.Y. and Wang K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. *Nature nanotechnology*, **2(5)**, 295-300
- Vanti, G.L., Nargund V.B., N, B.K., Vanarchi R., Kurjogi M., Mulla S.I. and Patil R.R. (2019). Synthesis of Gossypium hirsutum derived silver nanoparticles and their antibacterial efficacy against plant pathogens. *Applied Organometallic Chemistry*, **33(1)**, e4630. https://doi.org/

- 10.1002/aoc.4630
- Vijayakumar, P.S., Abhilash O.U., Khan B.M. and Prasad B.L. (2010). Nanogold loaded sharp edged carbon bullets as plant gene carriers. *Advanced Functional Materials*, **20(15)**, 2416-2423. https://doi.org/10.1002/adfm. 200901883
- Wang, L., Hu C. and Shao L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. *International journal of nanomedicine*, 1227-1249. https://doi.org/10.2147/IJN.S121956
- Wang, X., Liu X. and Han H. (2013). Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. *Colloids and Surfaces B: Biointerfaces*, **103**, 136-142. https://doi.org/10.1016/j.colsurfb.2012.09.044
- Wang, X., Liu X., Chen J., Han H. and Yuan Z. (2014). Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. *Carbon*, **68**, 798-806. https://doi.org/10.1016/j.carbon. 2013.11.072
- Warghane, A., Saini R., Shri M., Andankar I., Ghosh D.K. and Chopade B.A. (2024). Application of nanoparticles for management of plant viral pathogen: current status and future prospects. *Virology*, **592**, 109998. https://doi.org/10.1016/j.virol.2024.109998
- Worrall, E.A., Hamid A., Mody K.T., Mitter N. and Pappu H.R. (2018). Nanotechnology for plant disease management. *Agronomy*, 8(12), 285. https://doi.org/10.3390/agronomy 8120285
- Yao, K.S., Li S.J., Tzeng K.C., Cheng T.C., Chang C.Y., Chiu C.Y. and Lin Z.P. (2009). Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. *Advanced materials research*, **79**, 513-516. https://doi.org/10.4028/www.scientific.net/AMR.79-82.513
- Yehia, R.S. and Ahmed O.F. (2013). In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. *Afr. J. Microbiol. Res*, **7(19)**, 1917-1923. DOI: 10.5897/AJMR2013.5668
- Zhang, X., He X., Wang K., Wang Y., Li H. and Tan W. (2009). Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. *Journal of nanoscience and nanotechnology*, **9(10)**, 5738-5744. https://doi.org/10.1166/jnn.2009.1287
- Zhang, X., Zhang J. and Zhu K.Y. (2010). Chitosan/double stranded RNA nanoparticle mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (*Anopheles gambiae*). *Insect molecular biology*, **19(5)**, 683-693. https://doi.org/10.1111/j.1365-2583.2010.01029.x